AI Features - XiaoZhi Firmware AI Technology Integration Guide
🤖 AI Features
Learn how to implement voice interaction, AI model integration and smart control functions on the ESP32-S3 platform.
🎯 Core AI Architecture
🧠 Hybrid AI Inference Architecture
graph TB
A[Voice Input] --> B[Local Voice Wake-up]
B --> C[Multilingual ASR Recognition]
C --> D{Inference Strategy Selection}
D -->|Simple Commands| E[Edge AI Processing]
D -->|Complex Dialogue| F[Cloud LLM Inference]
E --> G[Device Control Execution]
F --> H[Intelligent Response Generation]
H --> I[TTS Voice Output]
G --> I
🔥 Core AI Features Deep Dive
1️⃣ Offline Voice Wake-up AI
Technical Principle: Based on Espressif’s official Wake Word Engine
- 🎙️ Default Wake Word: “你好小智” (Customizable with 26+ official wake words)
- ⚡ Response Speed: <200ms ultra-low latency wake-up
- 🔋 Power Optimization: Wake-up standby power consumption <5mA
- 🌐 Offline Operation: Completely local, no network connection required
🛠️ Wake Word Customization Development Guide
# ESP-IDF environment wake word configuration
idf.py menuconfig
# Navigate to: Component config > ESP Speech Recognition
# Select: Wake Word Model Selection
# Available words: "Hi ESP", "Alexa", "小智" and 26 other official vocabulariesSupported Wake Word List:
- Chinese: “你好小智”, “小智助手”, “智能管家”
- English: “Hi ESP”, “Hello World”, “Smart Home”
- Japanese: “コンニチワ”, “スマート”
- Korean: “안녕하세요”, “스마트”
2️⃣ Multilingual Intelligent Speech Recognition (ASR)
Technology Stack: Integrates industry-leading ASR engines
- 🗣️ Supported Languages: Chinese (Mandarin/Cantonese) | English | Japanese | Korean | Russian
- 🎯 Recognition Accuracy: Chinese recognition rate >95%, English recognition rate >93%
- 🔊 Audio Format: 16kHz sampling rate, 16-bit PCM encoding
- 🌍 Offline/Online: Hybrid mode, keywords offline, complex sentences online
🌐 Multilingual Localization Technical Architecture
Voice Resource Package Structure:
main/assets/locales/
├── zh-CN/ # Simplified Chinese
│ ├── 0.ogg ~ 9.ogg # Number audio
│ ├── welcome.ogg # Welcome prompt
│ ├── activation.ogg # Activation success
│ ├── wificonfig.ogg # Wi-Fi configuration
│ ├── upgrade.ogg # Firmware upgrade
│ ├── err_pin.ogg # PIN error
│ ├── err_reg.ogg # Registration error
│ └── language.json # Language metadata
├── en-US/ # English (same structure)
├── ja-JP/ # Japanese
├── bg-BG/ # Bulgarian (v2.0 new)
├── ca-ES/ # Catalan (v2.0 new)
├── da-DK/ # Danish (v2.0 new)
├── el-GR/ # Greek (v2.0 new)
├── fa-IR/ # Persian (v2.0 new)
├── fil-PH/ # Filipino (v2.0 new)
├── he-IL/ # Hebrew (v2.0 new)
├── hr-HR/ # Croatian (v2.0 new)
├── hu-HU/ # Hungarian (v2.0 new)
├── ms-MY/ # Malay (v2.0 new)
├── nb-NO/ # Norwegian (v2.0 new)
├── nl-NL/ # Dutch (v2.0 new)
├── sk-SK/ # Slovak (v2.0 new)
├── sl-SI/ # Slovenian (v2.0 new)
├── sr-RS/ # Serbian (v2.0 new)
└── sv-SE/ # Swedish (v2.0 new)Technical Implementation:
- Audio Format: OGG Vorbis, 16kHz sampling rate
- Storage Optimization: ~150KB per language, compile on demand
- Runtime Loading: Load corresponding language package based on configuration at startup
- Memory Usage: ~50KB RAM for current language resources
Language Switching Configuration:
// sdkconfig configuration
CONFIG_XIAOZHI_LANGUAGE="zh-CN" // Set default language
// menuconfig path
// Xiaozhi Assistant -> Language Settings -> Select Language
Supported Language Tiers:
- Tier 1 (Priority Optimized): Chinese, English, Japanese, Russian
- Tier 2 (Full Support): Spanish, French, German, Korean
- Tier 3 (Basic Support): Other 17 newly added languages
3️⃣ Large Language Model Integration & Inference
🚀 Supported Mainstream AI Large Models
| AI Model | Provider | Inference Method | Special Capabilities | Access Cost |
|---|---|---|---|---|
| DeepSeek-V3 | DeepSeek | Cloud API | Math Reasoning/Code Generation | Low Cost |
| Qwen-Max | Alibaba Cloud | Cloud API | Chinese Understanding/Multimodal | Medium |
| Doubao-Pro | ByteDance | Cloud API | Dialogue Generation/Creative Writing | Medium |
| ChatGPT-4o | OpenAI | Cloud API | General Intelligence/Logic Reasoning | High Cost |
| Gemini | Cloud API | Multimodal/Real-time Interaction | Medium-High |
🧩 Edge AI Inference Capabilities
Lightweight Model Support (Planned Features):
- 📱 TensorFlow Lite: Support for quantized lightweight models
- 🔧 Model Size: Support for 1-10MB edge inference models
- ⚡ Inference Speed: Simple commands <100ms response
4️⃣ AI Vision & Image Processing (v2.0 New)
📷 Camera System Refactoring
Technical Improvements:
- Code Refactoring: esp32_camera.cc expanded from basic version to 935 lines
- Interface Standardization: Unified camera API interface, supports multiple models
- Resolution Expansion: Support for more resolution options (QVGA to 1080p)
- Performance Optimization: Frame rate increased 30%, latency reduced 50%
- Memory Management: Optimized PSRAM usage, supports higher resolutions
Supported Camera Modules:
- OV2640: 2MP, cost-effective choice
- OV3660: 3MP, better image quality
- OV5640: 5MP, high-end solution
- GC032A: Low-cost option
AI Vision Application Scenarios:
// Camera initialization example (based on v2.0 new interface)
camera_config_t config = {
.pin_pwdn = -1,
.pin_reset = -1,
.pin_xclk = 15,
.pin_sscb_sda = 4,
.pin_sscb_scl = 5,
.pin_d7 = 16,
.pin_d6 = 17,
.pin_d5 = 18,
.pin_d4 = 12,
.pin_d3 = 10,
.pin_d2 = 8,
.pin_d1 = 9,
.pin_d0 = 11,
.pin_vsync = 6,
.pin_href = 7,
.pin_pclk = 13,
.xclk_freq_hz = 20000000,
.pixel_format = PIXFORMAT_JPEG,
.frame_size = FRAMESIZE_VGA, // 640x480
.jpeg_quality = 12,
.fb_count = 2, // Double buffering for better performance
.grab_mode = CAMERA_GRAB_LATEST // v2.0 new mode
};
esp_err_t err = esp_camera_init(&config);🖼️ JPEG Encoding/Decoding Optimization
v2.0 Major Updates:
- Removed Old Engine: Removed 722-line old jpeg_encoder (performance bottleneck)
- New Decoder: jpeg_to_image.c (264 lines), dedicated JPEG decoding
- Encoder Refactoring: image_to_jpeg refactored with 575 lines, 3x performance boost
- Hardware Acceleration: Optimized using ESP32-S3’s DMA and vector instructions
Performance Comparison:
| Operation | v1.x | v2.0 | Improvement |
|---|---|---|---|
| JPEG Encoding | 850ms | 280ms | 3.0x |
| JPEG Decoding | 650ms | 220ms | 2.95x |
| Memory Usage | 180KB | 95KB | 47% reduction |
Technical Details:
// JPEG encoding optimization (based on v2.0)
typedef struct {
uint8_t* buf; // Output buffer
size_t len; // Data length
size_t buf_size; // Buffer size
int quality; // Compression quality (1-100)
bool use_dma; // Use DMA acceleration
bool use_vector; // Use vector instructions
} jpeg_encode_config_t;
// Encoding API
esp_err_t jpeg_encode_rgb888(
const uint8_t* rgb_data,
int width,
int height,
jpeg_encode_config_t* config,
uint8_t** out_buf,
size_t* out_len
);Application Scenarios:
- Real-time Streaming: JPEG encoding for real-time transmission via WebSocket
- AI Recognition: Fast encoding/decoding for image recognition preprocessing
- Storage Optimization: JPEG compression saves storage space
🎯 SenseCAP Watcher AI Vision
Integration Solution (v2.0 Enhanced):
- SSCMA Camera: sscma_camera.cc expanded with 383 lines
- AI Models: Support for TinyML lightweight models
- Recognition Capabilities: Face detection, object recognition, gesture recognition
- Processing Speed: 640x480@15fps real-time processing
Technical Architecture:
┌─────────────────────────────────┐
│ ESP32-Camera (Hardware) │
│ └─ OV2640/OV3660 camera module │
├─────────────────────────────────┤
│ JPEG Encode/Decode (v2.0) │
│ ├─ Hardware DMA acceleration │
│ └─ Vector instruction optimize │
├─────────────────────────────────┤
│ AI Inference Engine │
│ ├─ TensorFlow Lite Micro │
│ ├─ SSCMA Models │
│ └─ Cloud AI Services │
├─────────────────────────────────┤
│ Application Layer │
│ ├─ Face Recognition │
│ ├─ Object Detection │
│ └─ Gesture Control │
└─────────────────────────────────┘Practical Use Cases:
- Smart Door Lock: Face recognition + voice confirmation
- Gesture Control: Gesture recognition for smart home control
- Object Recognition: Identify objects and voice announcement
- 🎯 Use Cases: Device control, status queries, simple Q&A
// Edge AI inference example code
class EdgeAIEngine {
TfLiteInterpreter* interpreter;
bool processSimpleCommand(const char* text) {
// Text preprocessing
auto tokens = tokenize(text);
// Model inference
interpreter->SetInputTensorData(0, tokens.data());
interpreter->Invoke();
// Result parsing
return parseCommandResult();
}
};4️⃣ Intelligent Text-to-Speech (TTS)
Multi-engine Support Strategy:
- 🎵 Cloud TTS: High-quality human voice synthesis (supports emotional speech)
- 🔧 Local TTS: ESP32-S3 onboard simple voice synthesis
- 🎭 Multiple Voices: Support for male/female/child voice selections
🎚️ TTS Configuration & Voice Customization
# TTS engine configuration
tts_config:
primary_engine: "cloud" # cloud/local
voice_style: "female_warm" # Voice selection
speech_rate: 1.0 # Speech rate (0.5-2.0)
pitch: 0 # Pitch (-500 to 500)
language: "en-us" # Output language
cloud_tts:
provider: "azure" # azure/google/baidu
api_key: "${TTS_API_KEY}"
region: "eastasia"🛠️ AI Development & Integration
💻 Zero-Code AI Integration
XiaoZhi AI platform provides a graphical configuration interface, enabling non-technical users to quickly configure AI capabilities:
graph LR
A[Web Configuration Interface] --> B[Select AI Model]
B --> C[Configure API Keys]
C --> D[Test Connection]
D --> E[One-Click Deploy]
E --> F[AI Capabilities Activated]
🔧 Developer API Interface
// XiaoZhi AI SDK core interface
class XiaoZhiAI {
public:
// Initialize AI engine
bool initAI(const AIConfig& config);
// Voice wake-up callback
void onWakeWordDetected(WakeWordCallback callback);
// Speech recognition
std::string recognizeSpeech(const AudioData& audio);
// Large model dialogue
std::string chatWithLLM(const std::string& message);
// Speech synthesis
AudioData synthesizeSpeech(const std::string& text);
// Device control
bool executeCommand(const DeviceCommand& cmd);
};📈 AI Performance Metrics
⚡ Real-time Performance
- Voice Wake-up Latency: <200ms
- ASR Recognition Latency: <500ms (local) / <1s (cloud)
- LLM Inference Response: <2s (DeepSeek) / <3s (GPT-4)
- TTS Synthesis Latency: <800ms
- End-to-end Dialogue Latency: <5s (complete dialogue flow)
🎯 Accuracy Metrics
- Wake Word Accuracy: >99% (quiet environment) / >95% (noisy environment)
- Chinese ASR Accuracy: >95% (standard Mandarin)
- English ASR Accuracy: >93% (American/British accent)
- Command Execution Success Rate: >98% (clear commands)
💾 Resource Usage
- Flash Storage: 4MB (basic AI functions)
- RAM Usage: 512KB (runtime peak)
- CPU Usage: <30% (ESP32-S3 dual-core 240MHz)
- Power Consumption: 150mA (active dialogue) / 5mA (standby wake-up)
🔮 AI Technology Roadmap
📅 2025 Q1-Q2 Roadmap
🗓️ January 2025 - Edge AI Inference In Development
- Integrate TensorFlow Lite Micro
- Support 1-5MB quantized models
- Local device control command recognition
🗓️ February 2025 - Multimodal AI Planned
- ESP32-CAM vision integration
- Image recognition + voice interaction
- Visual Question Answering (VQA) capabilities
🗓️ March 2025 - Federated Learning Research
- ESP-NOW inter-device collaborative learning
- Privacy-preserving distributed AI
- Smart home collaborative decision-making
🎯 Future AI Features
- 🧬 Personalized AI: Model fine-tuning based on user usage patterns
- 🌐 Edge AI Clusters: Multi-device collaborative distributed intelligence
- 🔐 Privacy AI: Completely localized private domain AI assistant
- 🎮 Interactive AI: AR/VR augmented reality interaction capabilities
🚀 Getting Started with AI Features
Quick Start AI Capabilities
- Hardware Preparation: ESP32-S3 development board + XiaoZhi AI expansion board
- Firmware Flashing: Download pre-compiled AI firmware
- Network Configuration: Connect Wi-Fi, configure AI service APIs
- Wake-up Test: Say “你好小智” to verify wake-up function
- Dialogue Experience: Start natural conversation with AI assistant
Technical Support:
- 📧 Contact Email: [email protected]