AI Features - XiaoZhi Firmware AI Technology Integration Guide | XiaoZhi.Dev

AI Features - XiaoZhi Firmware AI Technology Integration Guide | XiaoZhi.Dev

🤖 AI Features

Learn how to implement voice interaction, AI model integration and smart control functions on the ESP32-S3 platform.

🎯 Core AI Architecture

Technology Positioning: XiaoZhi AI = Edge Intelligence + Cloud LLM + Protocol-based IoT Control

🧠 Hybrid AI Inference Architecture

  graph TB
    A[Voice Input] --> B[Local Voice Wake-up]
    B --> C[Multilingual ASR Recognition]
    C --> D{Inference Strategy Selection}
    D -->|Simple Commands| E[Edge AI Processing]
    D -->|Complex Dialogue| F[Cloud LLM Inference]
    E --> G[Device Control Execution]
    F --> H[Intelligent Response Generation]
    H --> I[TTS Voice Output]
    G --> I

🔥 Core AI Features Deep Dive

1️⃣ Offline Voice Wake-up AI

Technical Principle: Based on Espressif’s official Wake Word Engine

  • 🎙️ Default Wake Word: “你好小智” (Customizable with 26+ official wake words)
  • Response Speed: <200ms ultra-low latency wake-up
  • 🔋 Power Optimization: Wake-up standby power consumption <5mA
  • 🌐 Offline Operation: Completely local, no network connection required
🛠️ Wake Word Customization Development Guide
# ESP-IDF environment wake word configuration
idf.py menuconfig
# Navigate to: Component config > ESP Speech Recognition
# Select: Wake Word Model Selection
# Available words: "Hi ESP", "Alexa", "小智" and 26 other official vocabularies

Supported Wake Word List:

  • Chinese: “你好小智”, “小智助手”, “智能管家”
  • English: “Hi ESP”, “Hello World”, “Smart Home”
  • Japanese: “コンニチワ”, “スマート”
  • Korean: “안녕하세요”, “스마트”

2️⃣ Multilingual Intelligent Speech Recognition (ASR)

Technology Stack: Integrates industry-leading ASR engines

  • 🗣️ Supported Languages: Chinese (Mandarin/Cantonese) | English | Japanese | Korean | Russian
  • 🎯 Recognition Accuracy: Chinese recognition rate >95%, English recognition rate >93%
  • 🔊 Audio Format: 16kHz sampling rate, 16-bit PCM encoding
  • 🌍 Offline/Online: Hybrid mode, keywords offline, complex sentences online
Performance Tip: Complex multilingual mixed recognition requires cloud ASR support, stable network environment recommended

3️⃣ Large Language Model Integration & Inference

🚀 Supported Mainstream AI Large Models

AI ModelProviderInference MethodSpecial CapabilitiesAccess Cost
DeepSeek-V3DeepSeekCloud APIMath Reasoning/Code GenerationLow Cost
Qwen-MaxAlibaba CloudCloud APIChinese Understanding/MultimodalMedium
Doubao-ProByteDanceCloud APIDialogue Generation/Creative WritingMedium
ChatGPT-4oOpenAICloud APIGeneral Intelligence/Logic ReasoningHigh Cost
GeminiGoogleCloud APIMultimodal/Real-time InteractionMedium-High

🧩 Edge AI Inference Capabilities

Lightweight Model Support (Planned Features):

  • 📱 TensorFlow Lite: Support for quantized lightweight models
  • 🔧 Model Size: Support for 1-10MB edge inference models
  • Inference Speed: Simple commands <100ms response
  • 🎯 Use Cases: Device control, status queries, simple Q&A
// Edge AI inference example code
class EdgeAIEngine {
    TfLiteInterpreter* interpreter;
    
    bool processSimpleCommand(const char* text) {
        // Text preprocessing
        auto tokens = tokenize(text);
        
        // Model inference
        interpreter->SetInputTensorData(0, tokens.data());
        interpreter->Invoke();
        
        // Result parsing
        return parseCommandResult();
    }
};

4️⃣ Intelligent Text-to-Speech (TTS)

Multi-engine Support Strategy:

  • 🎵 Cloud TTS: High-quality human voice synthesis (supports emotional speech)
  • 🔧 Local TTS: ESP32-S3 onboard simple voice synthesis
  • 🎭 Multiple Voices: Support for male/female/child voice selections
🎚️ TTS Configuration & Voice Customization
# TTS engine configuration
tts_config:
  primary_engine: "cloud"  # cloud/local
  voice_style: "female_warm"  # Voice selection
  speech_rate: 1.0  # Speech rate (0.5-2.0)
  pitch: 0  # Pitch (-500 to 500)
  language: "en-us"  # Output language
  
cloud_tts:
  provider: "azure"  # azure/google/baidu
  api_key: "${TTS_API_KEY}"
  region: "eastasia"

🛠️ AI Development & Integration

💻 Zero-Code AI Integration

XiaoZhi AI platform provides a graphical configuration interface, enabling non-technical users to quickly configure AI capabilities:

  graph LR
    A[Web Configuration Interface] --> B[Select AI Model]
    B --> C[Configure API Keys]
    C --> D[Test Connection]
    D --> E[One-Click Deploy]
    E --> F[AI Capabilities Activated]

🔧 Developer API Interface

// XiaoZhi AI SDK core interface
class XiaoZhiAI {
public:
    // Initialize AI engine
    bool initAI(const AIConfig& config);
    
    // Voice wake-up callback
    void onWakeWordDetected(WakeWordCallback callback);
    
    // Speech recognition
    std::string recognizeSpeech(const AudioData& audio);
    
    // Large model dialogue
    std::string chatWithLLM(const std::string& message);
    
    // Speech synthesis
    AudioData synthesizeSpeech(const std::string& text);
    
    // Device control
    bool executeCommand(const DeviceCommand& cmd);
};

📈 AI Performance Metrics

Real-time Performance

  • Voice Wake-up Latency: <200ms
  • ASR Recognition Latency: <500ms (local) / <1s (cloud)
  • LLM Inference Response: <2s (DeepSeek) / <3s (GPT-4)
  • TTS Synthesis Latency: <800ms
  • End-to-end Dialogue Latency: <5s (complete dialogue flow)

🎯 Accuracy Metrics

  • Wake Word Accuracy: >99% (quiet environment) / >95% (noisy environment)
  • Chinese ASR Accuracy: >95% (standard Mandarin)
  • English ASR Accuracy: >93% (American/British accent)
  • Command Execution Success Rate: >98% (clear commands)

💾 Resource Usage

  • Flash Storage: 4MB (basic AI functions)
  • RAM Usage: 512KB (runtime peak)
  • CPU Usage: <30% (ESP32-S3 dual-core 240MHz)
  • Power Consumption: 150mA (active dialogue) / 5mA (standby wake-up)

🔮 AI Technology Roadmap

📅 2025 Q1-Q2 Roadmap

🗓️ January 2025 - Edge AI Inference In Development

  • Integrate TensorFlow Lite Micro
  • Support 1-5MB quantized models
  • Local device control command recognition

🗓️ February 2025 - Multimodal AI Planned

  • ESP32-CAM vision integration
  • Image recognition + voice interaction
  • Visual Question Answering (VQA) capabilities

🗓️ March 2025 - Federated Learning Research

  • ESP-NOW inter-device collaborative learning
  • Privacy-preserving distributed AI
  • Smart home collaborative decision-making

🎯 Future AI Features

  • 🧬 Personalized AI: Model fine-tuning based on user usage patterns
  • 🌐 Edge AI Clusters: Multi-device collaborative distributed intelligence
  • 🔐 Privacy AI: Completely localized private domain AI assistant
  • 🎮 Interactive AI: AR/VR augmented reality interaction capabilities

🚀 Getting Started with AI Features

Quick Start AI Capabilities

  1. Hardware Preparation: ESP32-S3 development board + XiaoZhi AI expansion board
  2. Firmware Flashing: Download pre-compiled AI firmware
  3. Network Configuration: Connect Wi-Fi, configure AI service APIs
  4. Wake-up Test: Say “你好小智” to verify wake-up function
  5. Dialogue Experience: Start natural conversation with AI assistant
🎯 Start AI Development Now 📖 Read AI Technology Deep Analysis

Join AI Developer Community: